Dans les domaines en constante évolution de l'intelligence artificielle (IA) et du machine learning (ML), la capacité à gérer et à traiter différents types de données est essentielle à la qualité des informations exploitables générées par les modèles.
Une stratégie de stockage optimale doit prendre en compte plusieurs éléments :
Créer une architecture de données pour favoriser l'adoption généralisée de l'IA dans l'entreprise constitue un véritable défi. Il n'est donc pas surprenant que de nombreuses entreprises qui achètent des serveurs basés sur des processeurs graphiques ou qui accèdent à ces serveurs via des hyperscalers se retrouvent bloquées lors de la phase de gestion des données. Une étude d'IDC révèle que le déplacement et la gestion des données font partie des obstacles les plus courants à la réussite des déploiements de l'IA.
Grâce à une approche unifiée et intelligente, NetApp permet aux équipes chargées de l'IA de dépasser les frontières des données en silo, peu importe où et comment elles sont stockées. Voici les principaux avantages des solutions NetApp pour les workflows d'IA :
Les clients NetApp bénéficient depuis des années d'une expérience multicloud hybride unifiée. NetApp ne pouvait pas prédire l'explosion de l'IA générative au cours des 12 derniers mois, mais nous avons conçu une infrastructure intelligente de données pour les entreprises data-driven. Il s'avère que ce framework est exactement ce dont les entreprises ont besoin pour exploiter l'IA et l'IA générative et obtenir un avantage concurrentiel.
Pour connaître le point de vue d'IDC sur les architectures de données pour les workflows d'IA, lisez le document Unified Data Architectures Provide Needed Flexibility for AI Workflows. Pour découvrir les points de vue des dirigeants de NetApp sur l'IA et l'IA générative, cliquez ici.
Arun Gururajan est Vice-président de la recherche et des sciences des données chez NetApp. Il supervise les initiatives liées à l'intelligence artificielle, au machine learning et aux sciences des données pour l'ensemble de la gamme de produits de l'entreprise. Auparavant, il a occupé divers postes à responsabilités chez Meta et Microsoft, où il a développé des produits optimisés par l'IA qui ont été largement adoptés de façon durable.