High performance computing (HPC) is the ability to process data and perform complex calculations at high speeds. To put it into perspective, a laptop or desktop with a 3 GHz processor can perform around 3 billion calculations per second. While that is much faster than any human can achieve, it pales in comparison to HPC solutions that can perform quadrillions of calculations per second.
One of the best-known types of HPC solutions is the supercomputer. A supercomputer contains thousands of compute nodes that work together to complete one or more tasks. This is called parallel processing. It’s similar to having thousands of PCs networked together, combining compute power to complete tasks faster.
It is through data that groundbreaking scientific discoveries are made, game-changing innovations are fueled, and quality of life is improved for billions of people around the globe. HPC is the foundation for scientific, industrial, and societal advancements.
As technologies like the Internet of Things (IoT), artificial intelligence (AI), and 3-D imaging evolve, the size and amount of data that organizations have to work with is growing exponentially. For many purposes, such as streaming a live sporting event, tracking a developing storm, testing new products, or analyzing stock trends, the ability to process data in real time is crucial.
To keep a step ahead of the competition, organizations need lightning-fast, highly reliable IT infrastructure to process, store, and analyze massive amounts of data.
HPC solutions have three main components:
To build a high performance computing architecture, compute servers are networked together into a cluster. Software programs and algorithms are run simultaneously on the servers in the cluster. The cluster is networked to the data storage to capture the output. Together, these components operate seamlessly to complete a diverse set of tasks.
To operate at maximum performance, each component must keep pace with the others. For example, the storage component must be able to feed and ingest data to and from the compute servers as quickly as it is processed. Likewise, the networking components must be able to support the high-speed transportation of data between compute servers and the data storage. If one component cannot keep up with the rest, the performance of the entire HPC infrastructure suffers.
An HPC cluster consists of hundreds or thousands of compute servers that are networked together. Each server is called a node. The nodes in each cluster work in parallel with each other, boosting processing speed to deliver high performance computing.
Deployed on premises, at the edge, or in the cloud, HPC solutions are used for a variety of purposes across multiple industries. Examples include:
The NetApp HPC solution features a complete line of high-performance, high-density E-Series storage systems. A modular architecture with industry-leading price/performance offers a true pay-as-you-grow solution to support storage requirements for multi-petabyte datasets. The system is integrated with leading HPC file systems, including Lustre, IBM Spectrum Scale, BeeGFS, and others to handle the performance and reliability requirements of the world’s largest computing infrastructures.
E-Series systems provide the performance, reliability, scalability, simplicity, and lower TCO needed to take on the challenges of supporting extreme workloads:
Meet the Critical Needs of your High Performance Computing Environment with Azure NetApp Files.